
Wormhole solutions in Einstein-Yang-Mills-Higgs system. II. Zero-order structure for G=SU(2)

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1983 J. Phys. A: Math. Gen. 16 1191

(http://iopscience.iop.org/0305-4470/16/6/014)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 18:06

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/16/6
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 16 (1983) 1191-1205. Printed in Great Britain 

Wormhole solutions in Einstein-Yang-Mills-Higgs system: 
11. Zero-order structure for 99 = SU(2)t 

P Hajicek 
Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5 ,  CH-3012 Bern, 
Switzerland 

Received 13 September 1982 

Abstract. For a simple Einstein-Yang-Mills-Higgs model, we study properties of the 
extreme wormhole solutions. As shown in a recent paper, the values of all fields at the 
boundary of the hole must satisfy a system of differential equations. We find solutions 
to this system in a number of cases, among others a non-abelian family similar to the 
’t Hooft-Polyakov monopole. We also prove that all solutions must be axisymmetric, and 
conjecture that the set of solutions which we have found is already complete. 

1. Introduction 

In  a recent paper (Hajicek 1982, hereafter denoted by I), we have derived a system 
of differential equations which must be satisfied by the boundary values of the metric, 
Yang-Mills potentials and Higgs scalar at the internal infinity of a wormhole. We 
have assumed that the wormhole is a static and smooth solution to an Einstein-Yang- 
Mills-Higgs system of a very general type: we admitted an arbitrary gauge group $3, 
an arbitrary representation for the Higgs field and an arbitrary Higgs Fotential. For 
a broad class of potentials, as well as for each Higgs vacuum of any potential, we 
have shown that all solutions must be abelian. 

The purpose of the present paper is to study the properties of solutions to the 
equations mentioned above, if the potential does not belong to the ‘abelian’ class. In 
particular, we want to show that there are then non-abelian solutions. We restrict 
ourselves to the most simple model possible to simplify the equations. 

The model we choose is defined as follows. The gauge group $3 is SU(2), the Higgs 
field Q is in the adjoint representation of $3, the quadratic forms introduced in I are 
given by 

and the potential function V ( Q )  reads 

( ,  ) g  = -(2e2)-’(, lK, ( 3 ) q =-I 2 ( ’  ) K ,  

V ( Q )  = k k [ ( Q ,  QI, --F2I2, 

where k and F are positive constants (with k = O  or F=O,  V ( Q )  belongs to the 
‘abelian’ class of theorem 2 in I). 

We choose the following basis for the Lie algebra su(2) of SU(2): 

(Ta)bc = E a b c *  
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1192 P Hajicek 

Then 
[T",  T b ] =  (Ta)cbT' = -eabCTc, 

and, for any X ,  Y E  su(2), we have: if X = X " T "  and Y"T", then 

( X ,  Y ) K  = -2X"Y". 

One can therefore write 

G;" =a,w: -a,w; + E " ~ ~ W : W : ,  

(dV/aQ)" = i k ( Q b Q b  -F2)Qa,  

(D,Q)" = a,Q" + eabc W:Q', 

w a ( Q 1 ,  Q2) = e2EabcQ?Q;. 

Then, the complete system of equations for the boundary values of the fields (the 
so-called O-order structure), as given by equations (48)-(54) in I, can be written in 
the following form: 

1 / G 2  = y2(EaEa/e2+B"B"/e2-2V - A / y 2 ) ,  (1) 

E"E " / e 2  + B "B " /e2  - 2 V = constant, (3) 

(DAQ)" (DBQ)" = kgAsgKL(DKQ)"(DLQ)a9 (4) 

(DAE)" = 0 ,  E a b c ~ b ~ c  = 0 ,  ( 5 )  

(EAB/&)(DBB)" + e2gABE "b'Qb(DBQ)r = 0 ,  (6) 
(l /Jg)(DA(JggABDeQ))" -kk(QhQb -F2)Q" = 0.  (7)  

Here, the notation is taken over from I. The only difference is that we leave out the 
symbol 'limN+O' and understand tacitly that all fields take on their boundary values. 

The plan of the paper is as follows. In S 2, we solve the equations (1)-(7) assuming 
that the electric field E" does not everywhere vanish. It seems to be a particular 
property of just SU(2) that there are only abelian solutions in this case. Indeed, 
already the group SU(3) looks more promising, because it contains for example the 
subgroup U ( l )  x SU(2). Equations ( 5 )  can then be satisfied by taking a generator of 
U (  1 )  for E, all other fields being u(1) x su(21-algebra valued so that they commute 
with E. This suggests that more-dimensional groups will lead to a larger number of 
different soliton solutions. We shall study this question elsewhere. 

In 0 3, we describe the promised non-abelian solution. It can exist only if the 
parameters in the Lagrangian satisfy certain conditions, in particular, the 'vacuum' 
value of the Higgs field is of the order of the Planck mass. The solution is spherically 
symmetric and satisfies the 't Hooft ansatz. If there is a reasonable global solution 
with this boundary value, then it can be something like the gravitating 't Hooft- 
Polyakov monopole with an extreme black hole in the middle. We also show that all 
spherically symmetric solutions to the equations (1)-(7) are exhausted by the spherical 
abelian solutions given by theorem 2 in I and our non-abelian solution. 

In 04,  we prove that any analytic solution to equations (1)-(7) must be axially 
symmetric. Extended calculations which we performed in studying the system (1)-(7) 
for axially symmetric fields on topologically spherical manifolds (but which we are 
not going to publish here) suggest the following conjecture. 

R = 2y2(E"E"/e2 + B " B " / e 2 + g A B ( D ~ Q ) " ( D ~ Q ) "  + 2V + ' I / y 2 ) ,  ( 2 )  

Conjecture. All solutions to the system (1)-(7) consist of the abelian solutions given 
by theorem 2 in I and the non-abelian solution given in S 3 of the present paper. 
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2. The case of non-vanishing electric field 

In this section, we assume that 

E"E" # 0. 

Then the whole system (1)-(7) is easily solvable. Let us choose a gauge on H such that 

E a  = gnu,  

where 8 is a function in H and 

n u  = ( l ,O,  0) .  

Then the longitudinal part of the first equation ( 5 )  gives 

g = constant, (8) 

whereas the transversal part is equivalent to 

W i  = WAn" (9) 

Q" =qn" (10) 

with WA being a covariant vector field in H. The second equation ( 5 )  means that 

where q is a function in H. 
Equation (9) and the definition of B (see I, equation (17)) imply 

B" = g n "  (11) 
where 

g = (1 /&)(a2 w3 -83  w2). 

Now, equation (6) is equivalent to 

93 =constant, 

whereas (7) becomes 

(1 /J&&gABasq) - tk ( q 2  - F 2 ) q  = 0. 

Equation (14) is the only non-trivial remainder from the Yang-Mills-Higgs part of 
the system (1)-(7). We can simplify it further using the Einstein equation (3): with 
(8) and (13), it yields 

q = constant. (15) 

Then (4) is satisfied and (14) is equivalent to 

( q 2  -F2)q  = 0.  

Thus, we have one of the two possible Higgs vacuums; this leads immediately to the 
solutions described in I. We must only set in theorem 2 

22 = 0 ,  X = X I ,  w = o  

2 y 2 v  = 0 ,  4 = E  
and set 
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for the true vacuum and 

2y2V = aky2F4, q = o  

for the false one. 

3. The case of vanishing electric field: the non-abelian solution 

In this section, we assume that 

E"E" = 0.  

By that, equations ( 5 )  are both satisfied and we have no restriction on W >  and Q" 
like (9) and (10). 

Of course, there will be the solutions of theorem 2 in I: if Q"Q" = F 2  and Q"Q" = 0. 
Next, we show that any solution must satisfy 

O S  Q"Q" SF' (16) 

Q"Q" > F 2  (17) 

on the whole of H. For assume that 

at some point, p say, of H. Then there is an open subset Ho of H such that (17) 
holds in Ho and Q"Q" = F 2  at aHo (aHo can be empty). Clearly, we have at dHo 

v ~ ~ ~ ( Q " Q " )  s 0,  

where U_^ is an external unit normal vector to ~ H o .  If we now multiply equation (7) 
by Q" J g  and integrate over Ho, we obtain 

d2x J&k(Q"Q" -F2)QbQb +gAB(DAQ)"(DBQ)"] 

.f,> ds uAQ"(DAQ)" = 0. 

V A ~ o ( ~ A ~ ) a  = V A i a A ( ~ " ~ " ) s ~  

However, 

and (18) can hold only if 

JA(Q"Q") = 0 

at aHo and 

Q"Q" = F 2 ,  

on Ho; this is the desired contradiction. 

F 2  only at isolated points. Let us look for such solutions. 

(DAQ)" = 0,  

Any new solution has therefore the property that it satisfies (16) and Q"Q" = 0, 

We choose the gauge on H such that 

Q" =qn",  n a  = (1,O, 0), (19) 
and split W 2  into longitudinal and transversal components 

W i  = WAn"+U>, U ;  = ( ~ " ~ - - n " n ~ ) w ; .  
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The remaining gauge freedom is represented by the transformations 

WX = WA +xA, 
( 2 1 )  

thus, we have an 'electromagnetic' potential WA, and a 'charged vector' field, UA = 
U: +iU:, on the manifold H. 

(DAQ)" (DBQ)" = (aAq )(ad) + 4 U >  U:, 

U: = U: cos x + U:, sin x, U ;  =-U;  s i n X + U i  cosx;  

Using the gauge (19)  and the splitting (20), we have 

E ~ ~ ~ Q ~ ( D ~ Q ) ~  =q2ui. 
The Einstein equations (1)-(4) become 

l / G Z  = yZ(B"B"/e2-2V(q) -A/yz) ,  

R 2  = 2 y Z ( B " B " / e 2 + g K L ( a ~ ) ( a L q )  +qzU2+2V + A / y 2 ) ,  (23 )  

BaBa/e2 - 2 V ( q )  = constant, (24) 

(aAq)(a&)+q2u>u: = ~ g A B ( g K L ( a K q ) ( a L q ) + q 2 U 2 ) ,  ( 2 5 )  

where 

uz = gKLU;;Ui 

is a gauge- and coordinate-invariant quantity. Equation ( 6 )  yields 

(26 )  BC (DAB)" = e 2 q 2 J & ~ &  U,". 

Written out, this reads as follows: 

a AB + b':B - U I B  = 0, 

aAB2+ U I B ' -  

wAB2-  U ~ B ' = e 2 q z J & A B g B C U ~ .  

The definition of the magnetic field (see I, equation (17)) is 

B = ( l / J g ) ( a z  W3 - 33 Wz + U:  U:  - U:U: ), 

B' = (i/J&a2u: -a& + w3u: - wzu: 1, 
B3=(1/Jg)(dzU: -a3U: + WzU: - W ~ U : ) .  

Finally, the scalar equation (7) reads: 

( 1  / Jg )d~  ( J i g  A B  ) - iq U' + ik (F2 - 4 ' ) q  = 0, (33 )  

q (l/Jg)aA(JggABU:) + g A B (  dAq + a&) -qgABWA6abUi = 0,  (34) 

where is the usual antisymmetric symbol in two dimensions, a,  b = 2,3 .  
We are not able to solve the nonlinear elliptic system of equations (22)-(25) and 

(27)-(33) completely. We can, however, find the desired non-abelian solution, and 
show that any solution must be axisymmetric (next section). 

Theorem 1. Assume that q =constant, O<q <F, on H. Then, the system (22)-(25) 
and (27)-(33) has a regular solution only if 

(YF)' > 4 (35) 
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and, distinguishing the following three cases, if 

4 y 2 A /  k = - [ ( vF)’ - +I2, 
i s  ( Y d 2  < (rF)2, 

for k = 4e2  (case (i)), 

4 y 2 ~ i  e 2  4 e 2  < - - - [ ( y I q 2  - :I2, e’ -- [(yF)2 - $12 s - 
k k k k  

4 y 2 h  

for k < 4 e 2  (case (ii)), and 

4 y 2 h  e’ 
[($7)2 - 9 2  < -< -- [(+I2 - $I2, e’ 4e’ 

k k  k - k  

k 2 4 y 2 h  

( 3 6 )  

( 3 7 )  

for k > 4 e 2  (case (iii)). The solution is then spherically symmetric with radius T o ,  and 
in a suitable gauge and the spherical coordinates 19, cp, is given by 

( y / r o ) 2  = g k ( v F ) 4 + $ ( 4 e 2 - k ) ( y q ) 4 + y 2 h ,  (42) 

(rlG12= e 2 ( ~ q ) 4 - a k [ ( ~ F ) 2 - ( v y ) 2 1 2 - ~ 2 1 i ,  ( 4 3 )  

w2= U :  =u: =o ,  ( 4 4 )  

U: =*U: sine.  ( 4 5 )  

Comment. Figures 1 ,  2 and 3 illustrate the inequalities ( 3 8 ) ,  ( 3 6 )  and ( 4 0 ) .  
In case (i), the solution depends on one free parameter, namely the value of q 

within the limits ( 3 7 ) .  The lower limit corresponds to G =CO,  the upper one to the 
abelian solution with 4 = F. As q increases, the scalar energy density at the horizon, 

U2 -1 2 1 / 2  w, = *COS e, 2 - ’ r d k ( F 2 - q  11 , 

( e 2 / 2 v 4 ) [ ( v ~ ) ’  - ( Y ~ ) ~ I ~ ,  

Figure 1. For k <4e2,  the non-abelian solution exists only if the coupling constants lie 
in the shaded region. 
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Figure 2. For k = 4e2,  the non-abelian solution exists only if the coupling constants lie 
in the curve indicated. 

I I 

Figure 3. For k > 4 e 2 ,  the non-abelian solution exists only if the coupling constants lie 
in the shaded region. 

decreases from ( e  2 / 2  Y ~ ) [ ( ~ F ) ~  - a]' to zero, whereas the Yang-Mills energy density, 

i e 2 / 2 r 4 ) ( r q ) 4 ,  

increases from e 2 / 8 y 4  to ( e 2 / 2 y 4 ) ( y F ) 4 .  Their sum is not constant; the geometry 
changes through the quantity G, the radius ro of the hole does not depend on ( yq )* .  

In cases (ii) and (iii), the solution does not contain any free parameter-it is 
completely determined by the values of the coupling constants y ,  e, k, F, A. In case 
(ii), the lower limit (38) for 4y2.A/k corresponds to the abelian solution with q = F, 
the upper one to G = CO. In case (iii), exactly the opposite is true for (40). 

One can change the gauge in such a way that the transformed Yang-Mills potentials 
and the scalar at H satisfy the 't Hooft ansatz (van Nieuwenhuizen et a1 1976). 
Clearly, we must rotate first around the l-axis in the internal space, separately on 
the north and south hemisphere, to regularise the field at the poles, and then, again 
separately, one has to rotate Q" into the 'radial' direction. The calculation is straight- 
forward, so we skip it. 

Proof o f  theorem 1. We can always choose the gauge such that B 2  = 0. Let us multiply 
equation (26) by B " ;  we obtain 

(46) 2 2  3 . -  aA(B"B") = 2e q B JqcABgBcu:.  
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Taking gradients of both sides of (24), we have from (46) 

(47) 8 ~ 4  = - ( 2 / k ) [ 4 2 / ( F 2 - 4 Z ) ] B 3 J g ~ ~ ~ g  BC U;. 

We show easily that 

B 3  = 0.  (48) 

Assume, to the contrary, that B 3  # 0. Then, (47) implies U ;  = 0, A = 2 ,3 .  Setting 
this in equation (251, we obtain 

uiu’, = $ g A , u 2 .  

This equation can be satisfied with a non-degenerate metric g A B  only, if ufi = 0 ,  A = 
2,3 .  However, equation (32) implies, for Ufi  = U ;  = 0 ,  B 3  = 0, and this is the desired 
contradiction. 

From 4 =constant and equations (33), (24) and (22), (23), it follows that (H,  g A B )  

is a two-dimensional space of constant curvature. Indeed, (33) and (24) yield 

B”B“ =constant 

and 

U 2  = i k ( F 2  -4’)  = constant, 

so that from (22) 

1/G2 = constant 

and from (23) 

R = 2y2[$kq ’ ( F 2  - 4 2, + B “B “ l e  + 2 V + A/y ’1 = constant. (49) 

If R > O ,  the topology is spherical and we have a spherically symmetric geometry; if 
R = 0, the topology is toroidal and the geometry is locally plane symmetric; R = 
constant < 0 cannot be realised on a compact manifold H .  Consider first the spherical 
case. Choose the spherical coordinates 0, cp with 

d s 2 = r i  d02+r ;  sin2@ dq2,  

and rotate U %  by a gauge transformation (21) so that 

U :  =o ,  U:  >o .  
(The gauge condition B 2  = 0 is empty because of (48).) Then (25) reads 

u:u: =o,  ( U : ) 2 = t k r ; ( F 2 - q 2 ) ,  

( U : ) ’ + ( U ~ ) ’ = ~ k r ~  sin2 8 ( F 2 - q 2 ) .  

This together with (50) is equivalent to the last two equations of (44) and (45). 

equations (33) and (34) are identically satisfied, and (28) and (29) yield 
Now, (31) and (32) imply the first equations of (44) and (45). With (44) and (45), 

(51) 
2 2  B’= F e  4 .  

Now, (27) is identically satisfied, whereas (30) is equivalent to 

( y / r o l 2  = i[k ( Y F ) ~  + (4e2 - k ) ( y q  1’1. 
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From ( 4 8 )  and (511, 

B " B a / e 2  = e 2 q 4 ,  

and the remaining equations, namely ( 2 2 )  and ( 2 3 ) ,  imply (43 )  and (42 ) .  Equations 
( 4 2 )  and (52 )  are compatible only if 

( 4 e 2 -  k ) ( ~ q ) ~ - ( 4 e ' -  k)(y4)2+k[(yF)4-(yF)2]+4r2A=0. (53) 

0 < ( Y 4 ) 2 < ( Y F ) 2  ( 5 4 )  

(4e - k )( yq  )4 + 2 k ( Y F ) ~ (  y q ) 2  - k ( Y F ) ~  - 47 'A 3 0 

The roots of this equation must satisfy the following additional conditions: 

(assumption of theorem 1) and 

( 5 5 )  

(reality of G and ( 4 3 ) ) .  The last inequality can be brought to a more convenient 
form by adding the equality (53) to it. This yields 

[ 2 ( y q ) * -  11{4e2(~q)2+k[(yF)2- (yq)21}~0.  

The second factor is always non-negative because of ( 5 4 ) ,  so we have, equivalently 
to ( 5 5 ) :  

( v q  l2  3 4, (56 )  
and the scalar field is always of the order of the Planck mass. 

We consider the following sub-cases: (i) k = 4e2 ,  ( i i )  k < 4 e 2 ,  (iii) k > 4 e 2 .  
(i) k = 4e 2 

Equation ( 5 3 )  leads to 

( y F ) 1 = t * ( a - 4 y 2 1 i / k ) " 2 .  (57) 
The inequalities (54) and (56) exclude (yF)?. In order that (yF)',  is positive, we must 
have 

4 y 2 A / k  c a. 
However, the equality would allow no solution to ( 5 4 )  and (56). 

Thus, in order to have a solution, A is uniquely given by means of y ,  F, and k :  
solving equation (57) yields (36), and F must satisfy ( 3 5 ) .  q is arbitrary within the 
limits ( 5 4 )  and (56); using (57) we obtain (37). 

From the roots of equation (53), the inequality (56) leaves only (39). The reality of 
(yq)' is equivalent to 

( 5 8 )  

(ii) k < 4e 

4 y 2 , i / k  s e  2 / k  - [ (yF)'-:I2,  

4 y 2 A / k  > e 2 / k  - ( 4 e 2 / k ) [ ( y F ) 2 - : ] 2 .  (59 )  

and (54) yields (using the fact that ( Y F ) ~  > i) 

As 4 e 2 / k  > 1 in this case, the inequalities ( 5 2 )  and (53) have a solution, except for 
( v F ) ~  = t ,  and are equivalent to (38). 

Again we have only (41), but instead of ( 5 8 )  and (591, we obtain 
(iii) k > 4 e 2  

(60)  4 y 2 A / k  a e  2 / k  - [ ( Y F ) ~ - - ~ ] ~  
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and 

4 y 2 A / k  < e 2 / k  - ( 4 e 2 / k ) [ ( y F 1 2 - t 1 2 .  

(60) and (61) are compatible except for ( y F l 2  = $, and are equivalent to (40). 

geometry. In the most general case, the torus has the metric 
Next, consider R = 0, the toroidal topology and the locally plane symmetric 

d s2=r :  df12+r: dq2-22rlr2cosa dOdq, (62) 

OSflS27T, o s q  s27T, 

where 

are periodical coordinates and r l ,  r2, a are parameters, 

r1 '0, r2 ' 0, O < a < r r .  

Using the gauge (50) again, we drrive at 

U :  = o ,  2 112 U:  = : r l [ k ( F 2 - q  )I , 
U: = -r2(cos a ) : [ k ( F ' - q  )] 

U :  = *r2(sin a ) $ [ k ( F 2 - q  )] 

2 1/2  

2 1 / 2  

, 
. 

Equations (31) and (32) now imply 

w,= w,=o. (66) 

With (62)-(66), equations (33) and (34) are identically satisfied, whereas (28) and 
(29) are equivalent to 

2 2  B ' = F e  q . 
Then (27) is identically satisfied, but (30) becomes 

e 2 q 2  = - ( i [ k ( F 2  -q2)I2,  

which is impossible. Thus, there are no toroidal solutions. 

4. The case of vanishing electric field: axial symmetry 

In this section, we show the following theorem. 

Theorem 2. Any analytic solution to the system (22)-(25) and (29)-(33) is axially 
symmetric. 

Proof. Let us consider a point p EH, where 

aAq 0, q # O ,  q # F .  

We call such points 'generic'. There is a whole neighbourhood, N say, of p, every 
point of which is generic. Then, q can be chosen as a coordinate in N, for example 
x 2  = q. We can also require in N that 

g23 = 0 (67) 
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and introduce the abbreviation 

g22 = (g2I2,  g 3 3  = (g3)2, (68) 

where g2  and g 3  are some positive functions in N.  There remains the freedom 

x 3 =  f ( X I 3 )  

with f an arbitrary function with non-vanishing gradient in N. 

(67) and (68) in (47), we obtain 
Choose the gauge with B Z  = 0. Then equation (47) implies that B 3  f 0 in N .  Using 

U: =o ,  U ;  f O .  (69) 

Equation (25) then becomes 
U2 2 -1 - 2 ( g 2 ) 2 w 2  - (g2q)F2) ,  

u:u: =o ,  
(U: l2 + (U,' l 2  = l ( g 3 ) 2 ( u 2  + ( g 2 q ) r 2 ) .  

Equation (7 1) admits two solutions 

U: = o  in N 

U:  = o  in N .  
or 

(73) 

(74) 
We show that the solution (73) leads to a contradiction with the rest of the equations. 

From (73) and (69), we have 

U4 = o .  
This is a gauge-invariant statement (see (21)); in particular, the following equation 
for a gauge- and coordinate-invariant quantity follows from it:  

(l/Jg)(U:u: - u:v:, = 0, (75) 
and holds in the whole of N .  

It is convenient to choose another gauge 

U4 =o ,  U:  = o .  
Then (70) and (72) imply 

In the gauge (76), equations (30)-(32) read 

B' = 

RZ = -(gZgj)-- '  w*u:, 
B 3  = (gz.g3)-l&CJ:, 

whereas equations (27)-(29) become 

a , ~ ' -  U ~ B '  = 0, 

aAB2 -k UIB '  = W,B3, 
2 2 2  a,B3+ W,B2 = S A C  4 (gz/g3)U:. 
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From (81), (79) and (76), we obtain 

82B' = 0 ,  (84) 

83B1 =-(U: ) ' W ~ I ~ Z R ~ ,  (85) 

and (82) for A = 2, (761, (79) and (80) yield 

82[(u: ) z w 2 / g 2 g 3 1  = 0. (86) 

(86) is the integrability condition for the system (84) and (85). B' is a gauge invariant 
quantity and so are the left-hand sides of (84), (85). In order that (85) holds, the 
gauge (76) must be chosen in N. 

Next, consider a point p ,  where the function q attains its minimal value on H. 
Such a point must exist, as q is continuous and H is compact. Two cases are possible: 

(a) There is a curve, r say, through p such that q is constant along r. 
(b) There is a neighbourhood, NI say, of p in H such that (8.44 ), f 0 and q ( r )  > q ( p )  

for any r E N 1 ,  r # p .  
Assume (a). Then equation (25)  implies at r 

q = ' u 2 g A B .  

This leads either to 

q ( P ) = O  

u;u; = iu2(g2)2, u;u; = iu2(g,y, u;u; = 0,  

or to 

in any coordinates about 
either that 

which satisfy (67) and (68). The last three equations mean 

u2=o 
at r or that U ;  and U ;  are orthogonal linearly independent vectors in the internal 
space and so 

(l/Jg)(u:u: - u:u:, # 0 

at r. However, every point of a neighbourhood of r, except for points at r, is generic, 
so (75) holds at it. From continuity, equation (75) must also be true at r, and we 
have either 

q = o  or u2=o 

(l/Jg)a,(JggABdgq) + i k ( F 2 - q 2 ) q  = 0 

at r. Now, look at equation (33).  For U'= 0, it implies 

along r. As 4 has a minimum at r, the first term, being the Laplace operator, is 
non-negative, and so is the second term (as O s 4  G F ) .  The equation can therefore 
be satisfied only with 

(aAaE3q)r = 0 and (4  ) r  = 0, 
because the second root of (F2  -q2!q, F, cannot correspond to a minimum. Hence, 
in any case 

& = 0 ,  (aAq)r  = 0, ( 8 A a R q ) T  = 0. (87) 
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Using the analyticity of the function 4, the existence and uniqueness theorem of 
Cauchy and Kovalevska, and the Cauchy data (87) along r, we conclude that (33) 
implies for 4 that 

q = o  

in a whole neighbourhood of r. This is a contradiction for case (a). 
Consider case (b). It is clear that all q-level-orthogonal curves in the neighbourhood 

N 1  of p meet at p. Along any such curve, B'=constant, because of (84). B', as a 
gauge- and coordinate-independent quantity, must be continuous at p. Hence 

1 B = c = constant 

in the whole of N I .  Then ( 8 5 )  yields 

w , = o  

at any generic point of NI: there is a neighbourhood, NZ say, of such a generic point, 
in which we can choose the gauge (76). In N2, the magnetic equations (78)-(83) become 

(88) 

B 2 = 0 ,  (89) 

B' = (gZg3)-'& W3 = c ,  

B 3  = * ( g z g 3 ) - ' a z ( g 3 / g ~ q ) ,  (90) 

a Z ~ '  = *eq, a3B3 = 0, (91) 

U;B'- W3B3 = 0. (92) 

(We have used (77) where convenient.) Equation (91) can be integrated immediately, 

B3 = &q2 + C, 

where C is constant in Nz. Then (90) leads to 

a 2 ( g 3 / g 2 q )  = (h2* c ) g 2 g 3 .  

a2(g3/g2qw3) = 0 

w3 = w - ' ( x 3 ) g 3 / g 2 4 .  

Equations (92), (88), (90) and (77) imply 

or 

Using (88) again, we obtain 

(93) 

a 2 ( g 3 / g 2 q )  = cw (X 3)g2g3. 

However, this is compatible with (93) only if q = 0 in N2.  Hence, case (b) is excluded, 
too, and we are left with equation (74). In the gauge where B2 = 0, we obtain in N 

U', = (U,, 01, 

( U d 2  = ; ( u 2 - ( g 2 q ) - 2 ) ( g z ) 2 ,  (u3)' = ;(U'+ (gZq)-*)(g3)' .  (94) 

a 3 ~ '  = a 3 ~ 3  = a3u2 = W ,  = 0 ,  

u k  = (0 ,  u31, 

where, from (70) and (72), 

The equations (27)-(32) become 

(95) 
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82(gzu3 /g3)  = 0. (102) 

a3(g2w3/g3) = 0. (103) 

Multiplying (97) by g 2 / g 3  and using (102) and (95), we have 

Similarly multiplying equations (98) and (99) by g:  and using (102) and (103), we 
derive the following relations: 

Suppose that a3g: # 0. Then (104) and (105) yield 

B'u3-B3 W3 = 0.  

Comparing this with (97), we conclude that u2 = 0. However, this is precisely equation 
(73) which has led to a contradiction. Thus 

a3g2 = 0. 

Now, (102) and (103) imply immediately 

83(u3/g3)  = 8 3 ( W 3 / g 3 )  = 0. (1 07) 

(98) and (99) are equivalent to the equations 

a2u3/g3  = B ~ ~ ~ + u ~ w ~ / ~ ~ ~  a 2 W 3 / g 3 = B 1 g 2 - u 2 U 3 l g 3 ,  

whose right-hand sides are independent of x ' .  Hence, using (107), we obtain 

a3a2 log u3 = 83a2 log w3 = o 

u3 = c3(q)A (x3), 

and so 

w3 = c t ; ( q ) / l ( x 3 ) .  

Equations (107) then yield 

g3 = g3(4 ) A  (X 3, = 83(9 )/l (X '1, 
which is possible only if 

A ( x 3 )  = Kp ( x 3 )  
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for some constant K .  Hence, we can write 

U 3  = c3(4)A ( ~ ~ 1 ,  W3 = W3(q)A (x3), g 3 = g 3 ( q ) A ( x 3 ) .  

If we perform the transformation of the coordinate x 3  

x f 3  = I A ( x 3 )  dx3, 

we can transform all the functions u 3 ,  W 3  and g 3  to an  independent form: 

a;g; =&U; =a;w;. 
Summarising, we can say that there is a gauge and a coordinate system in N such 
that all independent variables of the theory become independent of one of the 
coordinates-namely x ‘ ~ .  Hence, from analyticity, the solution admits a one- 
dimensional symmetry group. This group is, in particular, an isometry group on a 
two-dimensional Riemannian manifold with a compact topology. Thus, it is an ‘axial 
symmetry’. 
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